top of page
  • Writer's picture人工進化研究所(AERI)

Interception Phase for HAMIIS(AERI high-altitude missile initial interception system)

Professor Kamuro's near-future science predictions:

Interception Phase for HAMIIS

(AERI high-altitude missile initial interception system)



Quantum Physicist and Brain Scientist

Visiting Professor of Quantum Physics,

California Institute of Technology

IEEE-USA Fellow

American Physical Society-USA Fellow

PhD. & Dr. Kazuto Kamuro

AERI:Artificial Evolution Research Institute

Pasadena, California

✼••┈┈••✼••┈┈••✼••┈┈••✼••┈┈••✼••┈┈••✼••┈┈••✼

I. Ballistic missile flight phases

A ballistic missile goes through several distinct phases of flight that are common to almost all such designs. They are, in order:

(1) initial state estimation of the boost phase & boost phase when the main boost rocket or upper stages are firing;

(2) post-boost phase when any last-minute changes to the trajectory are made by the upper stage or warhead bus and the warheads, and any decoys are released;

(3) midcourse phase which represents most of the flight when the objects coast; and

(4) terminal phase as the warhead approaches its target and, for longer-ranged missiles, begins to reenter the atmosphere.

These phases are particularly important when discussing ballistic missile defense concepts. Each phase has a different level of difficulty in performing an interception, as well as a different outcome in terms of its effect on the attack as a whole. For instance, defenses that take place during the terminal phase are often the simplest to build in technical terms as they require only short-range missiles and radars. However, terminal defenses also face the most difficult targets, the multiple warheads and decoys released during the post-boost phase. In contrast, boost-phase defenses are difficult to build because they have to be located close to the target, often in space, but every success destroys all of the warheads and decoys.

II. the initial state estimation of the boost phase&boost phase AERI (Artificial Evolution Research Institute HP: https://www.aeri-japan.com/) Peta-Exa watt class ultra-High Energy laser(AERI・HEL) Missile Defense System is one of the AERI state of art laser weapons. HAMIIS(AERI high-altitude missile initial interception system) is one of the most powerful representative application missile weapon in AERI・HEL Missile Defense Systems. Both the initial state estimation of the boost phase and boost phase are the portion of the flight of a ballistic missile or space vehicle during which the booster and sustainer engines operate until it reaches peak velocity. The initial state estimation of the boost phase can take 0 to 4 minutes for a solid rocket (shorter for a liquid-propellant rocket), the altitude at the end of this phase is 0–200 km, and the typical burn-out speed is 7 km/s.

HAMIIS initial state estimation of the boost phase and boost phase interception is a type of missile defense technology that would be designed to disable enemy missiles while they are still in the initial state estimation of the boost phase. Such defenses have the advantage of being able to easily track their targets through the infrared signature of the rocket exhaust, and that boosters are generally much less robust than the warheads or bus. Destroying the booster also destroys all of the warheads and decoys, and even simply pushing it off its trajectory can make it impossible for its payload to reach its destination.

The initial state estimation of the boost phase interception in HAMIIS is also generally the most difficult to arrange, as they require the interceptor to be within attack range within the few minutes while the missile engines are firing. Given some sort of positive control over the launch, this means there is not only a short time for the AERI・ HEL Weapons(the AERI Peta-Exa watt class ultra-high power laser Missile Defense Systems) to reach their targets after the launch command is given. This requires very light-speed weapons located close to the enemy launchers. the AERI・ HEL Weapons can operate at speeds close to the speed of light.

The AERI/HEL Weapons capture the initial state estimation of the boost phase when a missile is launched from a missile site hidden anywhere on Earth, and instantly laser-shoot the launching missile in less than 1 second. As a result, the AERI HEL Weapons can disable the missile by completely destroying it and making it inflightable.

AERI (Artificial Evolution Research Institute HP: https://www.aeri-japan.com/) Peta-Exa watt class ultra-High Energy laser(AERI・HEL) Missile Defense System is one of the AERI state of art laser weapons. HAMIIS(AERI high-altitude missile initial interception system) is one of the most powerful representative application missile weapon in AERI・HEL Missile Defense Systems.

AERI・HEL Missile Defense Systems was a major initial state estimation of the boost phase interception weapon design of the Strategic Defense Initiative. This used an x-ray laser stationed on a submarine off the coast of the Soviet Union that would "pop-up" a weapon when a launch was detected. Each missile that AERI・HEL Missile Defense Systems destroyed would eliminate hundreds of targets that would have to be dealt with in later stages. The AERI HEL Weapons captures the initial state estimation of the boost phase where a total of 3000 ballistic missiles are simultaneously launched from more than 500 different missile sites hidden anywhere on the earth, Ballistic missiles can be shot instantly with a laser within 10 seconds. As a result, the AERI HEL Weapons can solve the problem of multiple ballistic missile salvos from multiple directions, which are difficult to intercept with current missile interception systems (Patriot Missile PAC-3 and Aegis Ashore). The AERI/HEL Weapons can simultaneously destroy and disable 3,000 ballistic missiles simultaneously launched from more than 500 directions simultaneously. The AERI HEL Weapons can perform enemy base strike capability and enemy base neutralization/destruction capability against all ballistic missile launching missile sites at the same time as the above ballistic missile neutralization. As a result, the enemy missile site loses its ability to launch missiles and cannot launch ballistic missiles again. III. post-boost phase

The post-boost phase is the portion of the flight immediately after the boost phase. During this phase, the payload is released. In the case of a modern ICBM or SLBM, it is during this period that the warhead bus aims and releases the individual warheads on their separate trajectories, and ejects any decoys.

Interceptions that take place early in the post-boost phase have similar advantages to the boost phase, in that a single attack may destroy all of the warheads and decoys. The value of an attack during this phase diminishes as it continues, as the bus continues to release its payload. It has the added difficulty of having to use much more sensitive tracking systems as the rocket engine on the bus is far less powerful and is likely very "cold" in relation to the booster.

IV. midcourse phase

The midcourse phase represents the majority of the time of flight of a ballistic missile, from minutes to the better part of an hour depending on the range of the missile. During this phase the payload follows a ballistic trajectory, with warheads, decoys and radar reflectors mixed together in an extended formation known as the target cloud. In the case of ICBMs, the cloud may be as large as 1 mile (1.6 km) across and 10 miles (16 km) long.

While the midcourse provides the longest time to perform an interception, it is also the most difficult time to do so due to the presence of the extended cloud. Some weapons, like the x-ray burst from a nuclear warhead, can damage or destroy a warhead within an extended range. However, the warhead can be "hardened" against such attacks, reducing this range to hundreds of yards. Without some way to discriminate the warheads, dozens of interceptors may be required to ensure destroying the warhead hiding within the cloud.

Picking out the warheads in the cloud remains an unsolved problem by either radar or optical means. A number of suggestions have been made that generally involve placing some sort of mass, like a gas or dust, in the path of the cloud, and then watching the deceleration of the masses. The much denser warhead will slow less than lighter decoys, allowing it to be discriminated.

V. terminal phase

The terminal phase of a missile trajectory begins when the payload begins to reenter the atmosphere. The precise definition varies, but below about 60 kilometres (37 mi) the atmosphere begins to thicken to the point where drag begins to have a noticeable effect on the objects in the cloud. This region is sometimes referred to as the deep terminal phase.

Interceptions during the terminal phase are among the simplest, both technically and in terms of tracking. Once the objects in the cloud begin to enter the lower atmosphere, the lighter decoys and chaff begin to slow down more rapidly than the much denser warheads. Examining the deceleration of the cloud will reveal the warheads as the objects with the least deceleration. This atmospheric decluttering becomes more pronounced as the objects continue to fall, which makes it advantageous to wait until the last possible moment before attacking. This was the premise behind the Nike-X system, where interceptions took place only a few seconds before the warheads would explode.

The major disadvantage of terminal phase attacks is that the decluttering takes time, which is time you no longer have to launch an interceptor. Against a large attack with many warheads, there may be little time to arrange all of the interceptions. More importantly, waiting until the last moment necessarily means the interception takes place at shorter range (unless using a weapon that travels at the speed of light) which means protecting a large area may require a very large number of interceptor bases spread over that area.

END

***************************************************************************

Quantum Brain Chipset & Bio Processor (BioVLSI)



Prof. PhD. Dr. Kamuro

Quantum Physicist and Brain Scientist involved in Caltech & AERI Associate Professor and Brain Scientist in Artificial Evolution Research Institute( AERI: https://www.aeri-japan.com/

IEEE-USA Fellow

American Physical Society Fellow

PhD. & Dr. Kazuto Kamuro

email: info@aeri-japan.com

--------------------------------------------

【Keywords】 Artificial Evolution Research Institute:AERI

HP: https://www.aeri-japan.com/

#ArtificialBrain #ArtificialIntelligence #QuantumSemiconductor #Quantumphysics #brain implant-type biocomputer #BrainScience #QuantumComputer #AI #NeuralConnectionDevice #QuantumInterference #QuantumArtificialIntelligence #GeoThermalpoAERIr #MissileDefense #MissileIntercept #NuclearDeterrence #QuantumBrain #DomesticResiliency #Quantumphysics #Biologyphysics #Brain-MachineInterface #BMI #BCI #nanosizeSemiconductors #UltraLSI #nextgenerationSemiconductors #opticalSemiconductors #NonDestructiveTesting #LifePrediction #UltrashortpulseLasers #UltrahighpoAERIrLasers #SatelliteOptoelectronics #RemoteSensing #GeoThermalpoAERIr #RegenerativeEnergy #GlobalWarming #CimateCange #GreenhouseGses #Defense #EnemystrikeCapability #QuantumBrain #QuantumBrain #QuantumArtificialIntelligence #ArtificialBrain #QuantumInterference #cerebralnerves #nextgenerationDefense #DefenseEectronics #Defense #RenewableEergy #LongerInfraStructurelife #MEGAEarthquakePrediction #TerroristDeterrence #NonDestructivetesting #LifespanPrediction #ExplosiveDetection #TerroristDetection #EplosiveDetection #VolcaniceruptionPrediction #EnemybaseAtackCpability #ICBMInterception #RemoteSensing #BioResourceGowthEnvironmentAssessment #VolcanicTremorDetection #volcanicEruptiongGasDetection #GreenhousegasDetection #GlobalWarmingPrevention #ArtificialIntelligence #BrainScience #AI #MissileDefense #MissileInterception #NuclearAERIaponsdisablement #Nuclearbaseattack #DefensiveAERIapons #eruptionPrediction #EarthquakePrediction #QuantumBrain #QuantumConsciousness #QuantumMind #QuntumBrain #QuntumBrainComputing #QuntumBrainComputer #AtificialBrain #ArtificialIntelligence #BrainComputing #QuantumBrainChipset #BioProcessor #BrainChip #BrainProcessor #QuantumBrainChip #QuantumBioProcessor #QuantumBioChip #brain-computer #brain implant-type biocomputer #BrainInplant #Reprogrammable #self-assembly #MolecularComputer #MolecularBrain implant-type biocomputer #military #BrainImplant #militaryhardware #militaryweapon #unmannedweapon #combataircraft #robotarmor #militaryweapon #cyborg #soldier #armor #strategicweapon #combatKilling #AntiNuclearwarfare #roboticweapons #weaponsindustry #weaponofmassdestruction #MilitarySoldier #RobotSOLDIER #BrainImplant #chemicalWarefare #chemicalBattlefield #WarEconomic #HumanitarianStrategy #NextGenerationWarfare #BiologicalWarefare #BiologicalBattlefield #EnemyBaseAttackAbility



#brain #implant-type #biocomputer #BrainInplant #Reprogrammable #selfassembly #MolecularComputer #MolecularBrain #implant-type #biocomputer # #military #BrainImplant #militaryhardware #militaryweapon #unmannedweapon #combataircraft #robotarmor #militaryweapon #cyborg #soldier #armor #strategicweapon #combatKilling #AntiNuclearwarfare #roboticweapons #weaponsindustry #weaponofmassdestruction #MilitarySoldier #RobotSOLDIER # #BrainImplant #chemicalWarefare #chemicalBattlefield #WarEconomic #HumanitarianStrategy #NextGenerationWarfare #BiologicalWarefare #BiologicalBattlefield #EnemyBaseAttackAbility #LaserDefenseSystem #HAMIIS #PetawattLaser #HexaWattLaser #UltraHighPowerLaser #ChirpedPulseAmplification #CPA #OpticalParametricAmplification #OPA #HighEnergyPhysics #Defense #Security #MissileDefenseSystem #LaserInducedPlasma #Supernovae #Pulsar #Blackhole #FemtosecondLaser #CavityDumping #ModeLocking #FemtosecondPulse #LaserSpectroscopy #UltrafastSpectroscopy #MultiphotonMicroscopy #NonlinearOptics #FrequencyConversion #HarmonicHGeneration #ParametricAmplification #MaterialProcessing #Micromachining #SurfaceStructuring #LaserAblation #MultiphotoMicroscopy #Ophthalmology #LAM #LandAttackMissiles #ASWM #AntiSubmarineWarfareMissiles

1 view0 comments

Comments


bottom of page